Visualizing MNIST database

by: Eric S. Téllez

This demonstration shows in a 2D example the functionality of SearchGraph.

using SimilaritySearch, SimSearchManifoldLearning, Plots, StatsBase, LinearAlgebra, Markdown, Random
n = 100_000

M = randn(Float16, 2, n)
db = MatrixDatabase(M)
dist = SqL2_asf32()
size(M)

Now we can create the index

1G = SearchGraph(; dist, db)
ctx = SearchGraphContext(hyperparameters_callback=OptimizeParameters(MinRecall(0.99)))
2index!(G, ctx)
3optimize_index!(G, ctx, MinRecall(0.9))
1
Defines the index and the search context (caches and hyperparameters); particularly, we use a very high quality build MinRecall(0.99); high quality constructions yield to faster queries due to the underlying graph structure.
2
Actual indexing procedure using the given search context.
3
Optimizing the index to trade quality and speed.

The set of queries

We define a small set of queries being close to the border of the dataset and also in the most dense regions of the dataset.

Q = [Float32[-2, -2], Float32[2, -2], Float32[-2, 0], Float32[-0, 2], Float32[0, 0],   Float32[-3, 3],  Float32[4, 4], Float32[1, 0.5]]
I, D = searchbatch(G, ctx, VectorDatabase(Q), 30)

Please note how queries in low and high dense regions are located.

scatter(view(M, 1, :), view(M, 2, :), fmt=:png, c=:cyan, ma=0.3, a=0.3, ms=1, msw=0)

scatter!(getindex.(Q, 1), getindex.(Q, 2), c=:red, ma=0.7, a=0.7, ms=6, msw=0)

for c in eachcol(I)
    X = M[:, c]
    scatter!(view(X, 1, :), view(X, 2, :), c=:blue, ma=0.5, a=0.5, ms=2, msw=0)
    #scatter!( c=:auto, ms=2)
end

plot!(legend=nothing)

Since points are distributed in several regions with disparate density, their radii are also quite diverse. The next figure illustrates this effect.

Distribution of distances for the set of queries

plot(D, m=:auto, yscale=:log10, title="knn distances for elements in Q", fmt=:png)

Environment and dependencies

Julia Version 1.10.9
Commit 5595d20a287 (2025-03-10 12:51 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 64 × Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, cascadelake)
Threads: 64 default, 0 interactive, 32 GC (on 64 virtual cores)
Environment:
  JULIA_PROJECT = .
  JULIA_NUM_THREADS = auto
  JULIA_LOAD_PATH = @:@stdlib
Status `~/sites/SimilaritySearchDemos/Project.toml`
  [aaaa29a8] Clustering v0.15.8
  [944b1d66] CodecZlib v0.7.8
  [a93c6f00] DataFrames v1.7.0
  [c5bfea45] Embeddings v0.4.6
  [f67ccb44] HDF5 v0.17.2
  [b20bd276] InvertedFiles v0.8.0 `~/.julia/dev/InvertedFiles`
  [682c06a0] JSON v0.21.4
  [23fbe1c1] Latexify v0.16.6
  [eb30cadb] MLDatasets v0.7.18
  [06eb3307] ManifoldLearning v0.9.0
⌃ [ca7969ec] PlotlyLight v0.11.0
  [91a5bcdd] Plots v1.40.11
  [27ebfcd6] Primes v0.5.7
  [ca7ab67e] SimSearchManifoldLearning v0.3.0 `~/.julia/dev/SimSearchManifoldLearning`
  [053f045d] SimilaritySearch v0.12.0 `~/.julia/dev/SimilaritySearch`
⌅ [2913bbd2] StatsBase v0.33.21
  [f3b207a7] StatsPlots v0.15.7
  [7f6f6c8a] TextSearch v0.19.0 `~/.julia/dev/TextSearch`
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`